A modeling method to improve quantitation of fluorodeoxyglucose uptake in heterogeneous tumor tissue.
نویسندگان
چکیده
UNLABELLED The standard approach for evaluating FDG-PET kinetic studies is based upon an assumption that tissue within a representative region of interest (ROI) is relatively homogeneous in terms of FDG kinetics. In neoplasms and other disease states, tissue within an ROI may be grossly heterogeneous, due to adjacent infarcted tissue and other causes. We have developed a method employing two ROIs (one over the tumor and another over a "reference region") to deal with this level of heterogeneity. METHODS The method is based on the regular FDG model but consists of six variable parameters (6P model) which uses the kinetics in the reference region to account for the normal tissue within the tumor ROI, so that the kinetic data only associated with the tumor can be estimated. Monte Carlo simulations and human PET FDG studies were used to analyze the performance of the 6P model. RESULTS The narrower 95% confidence intervals of parameter estimates, which centered at the true tumor rate constants, and the smaller correlation matrix of the 6P model showed the better performance of the 6P model compared to the standard "homogeneous" four-parameter FDG model. Computer simulations further showed that the 6P model can accurately estimate the microparameters (rate constants: K1* (ml/min/g), k2* (min-1), k3* (min-1), k4* (min-1)) and the macroparameter (K (ml/min/g)) of tumor cells regardless of the percent weight of tumor cells in the lesions. CONCLUSIONS The new method can produce more reliable and accurate estimates of tumor glucose metabolic rates with dynamic PET FDG studies.
منابع مشابه
Background-Based Delineation of Internal Tumor Volumes on Static Positron Emission Tomography in a Phantom Study
Objective(s): Considering the fact that the standardized uptake value (SUV) of a normal lung tissue is expressed as x±SD, x+3×SD could be considered as the threshold value to outline the internal tumor volume (ITV) of a lung neoplasm. Methods: Three hollow models were filled with 55.0 kBq/mL fluorine18- fluorodeoxyglucose (18F-FDG) to represent tumors. The models were fixed to a barrel filled w...
متن کاملAn Agent- based Modeling for Breast Tissue Simulation and the Growth and Spread of Tumor in Various Breast Cancer States
Introduction: Breast cancer is a cancer that is caused by abnormal growth of breast cells. Modeling and simulation of the growth and treatment of breast cancer, along with providing the possibility of doing experiments and research, can reduce the time and cost of treatment by predicting some cases. The purpose of the present research was to develop an agent-based model for the simulation of b...
متن کاملAn Agent- based Modeling for Breast Tissue Simulation and the Growth and Spread of Tumor in Various Breast Cancer States
Introduction: Breast cancer is a cancer that is caused by abnormal growth of breast cells. Modeling and simulation of the growth and treatment of breast cancer, along with providing the possibility of doing experiments and research, can reduce the time and cost of treatment by predicting some cases. The purpose of the present research was to develop an agent-based model for the simulation of b...
متن کاملFabrication of low cost in-house slab homogeneous and heterogeneous phantoms for lung radiation treatment
Background: The heterogeneous composition of the human body presents numerous tissue types and cavities with widely differing radiologic properties. The aim of the present work was to develop a low cost homogeneous and heterogeneous phantom and the absorbed dose were measured by ionization chamber for different radiotherapy treatment techniques and compared with treatment planning syst...
متن کاملModeling of Tactile Detection of an Artery in a Soft Tissue by Finite Element Analysis
Nowadays, one of the main problems encountered in minimally invasive surgery and telesurgery is the detection of arteries in tissue. In this study, for the first time, tactile detection of an artery in tissue and distinguishing it from the tumor has been modeled by finite element method. In this modeling, three 2D models of tissue have been created: tissue, tissue including a tumor, and tissue ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
دوره 36 2 شماره
صفحات -
تاریخ انتشار 1995