A modeling method to improve quantitation of fluorodeoxyglucose uptake in heterogeneous tumor tissue.

نویسندگان

  • H M Wu
  • S C Huang
  • Y Choi
  • C K Hoh
  • R A Hawkins
چکیده

UNLABELLED The standard approach for evaluating FDG-PET kinetic studies is based upon an assumption that tissue within a representative region of interest (ROI) is relatively homogeneous in terms of FDG kinetics. In neoplasms and other disease states, tissue within an ROI may be grossly heterogeneous, due to adjacent infarcted tissue and other causes. We have developed a method employing two ROIs (one over the tumor and another over a "reference region") to deal with this level of heterogeneity. METHODS The method is based on the regular FDG model but consists of six variable parameters (6P model) which uses the kinetics in the reference region to account for the normal tissue within the tumor ROI, so that the kinetic data only associated with the tumor can be estimated. Monte Carlo simulations and human PET FDG studies were used to analyze the performance of the 6P model. RESULTS The narrower 95% confidence intervals of parameter estimates, which centered at the true tumor rate constants, and the smaller correlation matrix of the 6P model showed the better performance of the 6P model compared to the standard "homogeneous" four-parameter FDG model. Computer simulations further showed that the 6P model can accurately estimate the microparameters (rate constants: K1* (ml/min/g), k2* (min-1), k3* (min-1), k4* (min-1)) and the macroparameter (K (ml/min/g)) of tumor cells regardless of the percent weight of tumor cells in the lesions. CONCLUSIONS The new method can produce more reliable and accurate estimates of tumor glucose metabolic rates with dynamic PET FDG studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Background-Based Delineation of Internal Tumor Volumes on Static Positron Emission Tomography in a Phantom Study

Objective(s): Considering the fact that the standardized uptake value (SUV) of a normal lung tissue is expressed as x±SD, x+3×SD could be considered as the threshold value to outline the internal tumor volume (ITV) of a lung neoplasm. Methods: Three hollow models were filled with 55.0 kBq/mL fluorine18- fluorodeoxyglucose (18F-FDG) to represent tumors. The models were fixed to a barrel filled w...

متن کامل

An Agent- based Modeling for Breast Tissue Simulation and the Growth and Spread of Tumor in Various Breast Cancer States

Introduction: Breast cancer is a cancer that is caused by abnormal growth of breast cells. Modeling  and simulation of the growth and treatment of breast cancer, along with providing the possibility of doing experiments and research, can reduce the time and cost of treatment by predicting some cases. The purpose of the present research was to develop an agent-based model for the simulation of b...

متن کامل

An Agent- based Modeling for Breast Tissue Simulation and the Growth and Spread of Tumor in Various Breast Cancer States

Introduction: Breast cancer is a cancer that is caused by abnormal growth of breast cells. Modeling  and simulation of the growth and treatment of breast cancer, along with providing the possibility of doing experiments and research, can reduce the time and cost of treatment by predicting some cases. The purpose of the present research was to develop an agent-based model for the simulation of b...

متن کامل

Fabrication of low cost in-house slab homogeneous and heterogeneous phantoms for lung radiation treatment

Background: The heterogeneous composition of the human body presents numerous tissue types and cavities with widely differing radiologic properties. The aim of the present work was to develop a low cost homogeneous and heterogeneous phantom and the absorbed dose were measured by ionization chamber for different radiotherapy treatment techniques and compared with treatment planning syst...

متن کامل

Modeling of Tactile Detection of an Artery in a Soft Tissue by Finite Element Analysis

Nowadays, one of the main problems encountered in minimally invasive surgery and telesurgery is the detection of arteries in tissue. In this study, for the first time, tactile detection of an artery in tissue and distinguishing it from the tumor has been modeled by finite element method. In this modeling, three 2D models of tissue have been created: tissue, tissue including a tumor, and tissue ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 36 2  شماره 

صفحات  -

تاریخ انتشار 1995